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A. 
SUMMARY POINTS 

1) Negative density dependence (NDD) is common and occurs when per capita growth rate tends to decline as abundance increases. 

2) NDD is also associated with an equilibrium value (K), whereby populations tend to increase toward the K when N<K and populations tend to decrease toward K when N>K. K is sometimes referred to as a carrying capacity.

3) For most populations, density seems to explain between a quarter and 60% of the variance in rt. 
· That conclusion is based on analysis of R2.
· R2 is a statistic that one can calculate from the regression between Nt and rt. 
· R2 is also a number between zero and one that describes the proportion of variance in rt that is explained by fluctuations in Nt. 

4) Much (certainly not all) of the unexplained variance in a regression between Nt and rt is attributable to environmental stochasticity.
· To assess the influence of some particular manifestation of environmental stochasticity (such as winter severity or summer drought), one can analyze residuals, which can be calculated from the regression between Nt and rt. 

5) Positive density dependence (PDD) occurs when decreasing Nt is associated with decreasing rt. PDD is less common than NDD, but is still an important case. When PDD occurs, it is usually because the population has become too small (e.g., too small for individuals to maintain vital social behaviors or too small to withstand predation.). Populations exhibiting PDD tend to be at greater risk of extinction than populations with NDD.

6) Delayed density dependence occurs when rt is influenced not (only) by the current year’s abundance (Nt) but (also) by abundance in some prior year (Nt-T). Delayed density dependence is an important explanation for why many populations cycle.

7) NDD may be linear or non-linear. Species that are long-lived and reproduce slower tend to have convex nonlinearities. Species that are short-lived and reproduce rapidly tend to have concave nonlinearities. 
· Convex and concave are descriptions that depend on one’s perspective. Here the perspective is to imagine looking down on the line from up at the top of the graph. 
· The equation for rt that describes the linear case is rmax(1-Nt/K). An equation that describes rt for non-linear cases is rmax(1-(N/K)), where the value of  determines the shape of the non-linearity.

8) The strength of density dependence may be judged not only by R2 (see summary point 3) but also by the slope of the regression line. Steeper slopes correspond to stronger density dependence. The stronger density dependence is, the stronger the tendency to return toward K.
B. DISCUSSION QUESTIONS

1) What ecological circumstances can lead to:
a. negative density dependence?
b. positive density dependence?
c. delayed density dependence?
2) Chapter 2 opened with an example that illustrated how animal behavior can be density dependent – in the sense that typical behaviors exhibited by individuals can depend on how dense the population is. Being as specific as possible, can you think of other examples where behavior is likely to be density dependent in a way that would lead to density-dependent population dynamics?
3) Figure 3.3 illustrated fluctuations of blue-throated warblers in a patch of forest. That population was undoubtedly connected to other neighboring populations. To what extent do you suppose the fluctuations observed in Figure 3.3 were driven by density-dependent births rates, death rates, immigration, and emigration? Recall that rt is sometimes described by equation 2.3b, i.e., rt = bt + it – dt – et. 
4) Chapter 3 featured an example for which ibex population dynamics were importantly influenced by density and environmental stochasticity. Researchers concluded that fluctuations from year-to-year in winter precipitation were an important element of that stochasticity. Think of species that you know well, living in a habitat that you know well. What would you guess are the three most important sources of environmental stochasticity? How would you design a study to determine the importance of those sources? This study design should include plans for collecting field data and analyzing that data.
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D. PRACTICE PROBLEMS

1. Consider a population of tapirs whose per capita growth rate is well described by this expression: 0.20(1 – N/250). 
a. What is this population’s maximum per capita growth rate? What is the value of N for which the maximum per capita growth rate is observed? 
b. What is this population’s carrying capacity? What is the expected value of rt when N=K.
c. Use Excel to make a graph showing the relationship between N (on the x-axis) and r (on the y-axis) for this population. If you need a hint to get started, look at page 8 of this document.
d. Suppose this population has an abundance of 15 individuals. Use Excel, to predict the abundance of this population over each of the next 25 years. If you’d like a hint before looking at the complete solution, look to page 8 of this document.
e. Perform similar calculations as you did in (d), except this time suppose the population starts at 300 individuals.
f. Make a graph showing how abundance changes over time for the two cases described in (d) and (e). 


2. Figure 3.2 of the reading depicts the density dependent dynamics for a population of black-throated blue warblers. Reproduce those graphs. The data you need to do so is here:

	year
	density
	
	year
	density
	
	year
	density
	
	year
	density

	1969
	4
	
	1978
	10
	
	1987
	11.5
	
	1995
	9.9

	1970
	7
	
	1979
	14
	
	1988
	9
	
	1996
	5.6

	1971
	11
	
	1980
	8
	
	1989
	15
	
	1997
	8.3

	1972
	9
	
	1981
	12
	
	1990
	16
	
	1998
	8.3

	1973
	11
	
	1982
	14
	
	1991
	13.5
	
	1999
	11

	1974
	11
	
	1983
	13.5
	
	1992
	15
	
	2000
	10.5

	1975
	12
	
	1984
	9.5
	
	1993
	10
	
	2001
	9

	1976
	11
	
	1985
	8.5
	
	1994
	7
	
	2002
	9

	1977
	12
	
	1986
	10.5
	
	
	
	
	
	



· Figure 3.2 is very nicely formatted. Reproduce the formatting of those graphs as much as you can. (Though there is no need to include labelled diamonds as shown in panel b.)
· Panel b of your figure should also include the trendline. Ask Excel to report the equation of the trendline and the value of R2. If you are unsure about how to do so, type into a web browser something like “adding a trendline to a graph in Excel”
· Show how the parameters rmax and K can be derived from the equation of the trend line. 


3. The George Reserve is a two-square-mile fenced area in southeastern Michigan. In the late 1920s a handful of deer were introduced into this fenced area. Below are data showing the population’s abundance over time. Create the same graphs and analysis that you just performed in problem 2, except this time do so on this data set.

	year
	N
	
	year
	N
	
	year
	N

	1927
	16
	
	1936
	170
	
	1945
	104

	1928
	30
	
	1937
	145
	
	1946
	160

	1929
	50
	
	1938
	140
	
	1947
	130

	1930
	80
	
	1939
	143
	
	1948
	103

	1931
	140
	
	1940
	130
	
	1949
	132

	1932
	160
	
	1941
	130
	
	1950
	130

	1933
	220
	
	1942
	120
	
	1951
	87

	1934
	155
	
	1943
	110
	
	1952
	121

	1935
	215
	
	1944
	106
	
	1953
	127




4. Read this paper: Courchamp et al. (1999). Inverse density dependence and the Allee effect. Trends in Ecology & Evolution, 14(10), 405-410. Based on that paper, describe three examples of positive density dependence. Each description should include 2-3 sentences.

5. On the topic of non-linear density dependence, Chapter 3 states that populations with different values of  behave differently when they are “perturbed” from the carrying capacity by some exogenous influence, such as being harvested by humans. 
	Suppose that we have two populations of a commercially-harvested fish. One population is of green kaders*, which is longer-lived and reproduces slowly. Its population dynamics are characterized by these parameters: rmax = 0.2,  = 5.0, and K = 200. 
The other population is of yellow baricks*, which is shorter-lived and has greater reproductive capacity. Its population dynamics are characterized by these parameters: rmax = 1.5,  = 0.1, and K = 200. 
That both populations have the same carrying capacity will help us make comparisons. You’ll want to make three graphs:
· Make a graph of N versus r. The graph should have two lines on it. One for the kaders and another for the baricks. (When formatting this graph, let the domain of the x-axis run from 0 to 400. And, let the range of the y-axis be -0.3 to 0.3.) 
· Make a graph that compares how quickly the two populations return to their carrying capacity after a sudden reduction in population size to N=150. The graph should have two lines on it, one for the kaders and another for the baricks. 
· Make a third graph showing how the populations decline back toward K after a series of boon years that leave the populations at N=250. 
Write a few sentences interpreting the insight one can glean from these graphs, particularly in the context of harvested populations. What we have done, here in this problem, is to have explored the concept of population resilience. 
If you need a hint to get started on this problem, see page 8 of this document.

* Kaders and baricks are imaginary species of fish.
6. Chapter 3 indicated that delayed density dependence can lead to oscillations in abundance. In this problem, you’ll demonstrate that idea by making graphs like those shown in Figure 3.10. More specifically, you’ll explore how the strength of oscillations is influenced by rmax and the duration of the delay.
Consider a population with rmax = 0.3, K = 200, and an initial population size of 20. Further suppose that the population’s per capita growth rate is well-described by this expression, rmax (1 – Nt/K). Predict the population’s abundance for each year over an 80-year period.
	Next, predict the abundance of a population with the same parameters, except in this case the dynamics are governed by delayed density dependence. Specifically, let the per capita growth rate be described by this expression, rmax (1 – Nt-T/K), where T is set to 1. 
	Make predictions of abundance for three more populations, each with its own value of T. Specifically let T equal 2, 3, and 4. 
	Make one graph that shows abundance over time for all five populations.
	Now, change rmax to 0.2 and observe how the dynamics change. Then change rmax to 0.4 and observe how the dynamics change.
	Write a short paragraph describing how the dynamics change as one changes rmax and T.




HINTS FOR PROBLEMS (1c), (1d), and (4).

1c) Set up your spread sheet like this:
· Type “rmax” into cell <A1>. Type “K” into cell <A2>. Type appropriate values into cells <B1> and <B2> for rmax and K.
· Into cell <A4>, type the letter “N”. In the cells below, type in a series of numbers in that column: 0, 20, 40, … 340. 
· Into cell <B4> type the letter “r”. Into cell <B5> type an equation that calculates per capita growth rate given the value of N that appears in <A5>, as well as the values of rmax and K that you typed into cells <B1:B2>. Copy that equation into the cells below. Graph column <A> versus column <B>.

1d) Set up your spreadsheet like this:
· Type “rmax” into cell <A1>. Type “K” into cell <A2>. Type appropriate values into cells <B1> and <B2> for rmax and K.
· Into cell <A4>, type “Year”. In the cells below, type in a series of numbers in that column: 0, 1, 2,…25. 
· Into cell <B4>, type “N”. Into cell <B5> type the population’s initial size.
· Into cell <B6> type an equation that calculates abundance on the basis of rmax, K, and the previous year’s abundance.

  5) Set up your spreadsheet sheet like this:
· Into cells <A1:C4> make a simple table showing the parameter values for the two populations.
· To make the first graph, type into cells <A6:C6>, these labels: N, r for kaders, r for baricks. Set up the cells beneath these labels much like you did for problem (1c).
· To make the second graph, type into cells <E6:G6>, these labels: time, N (kaders), N (baricks). Set up the cells beneath these labels much like you did for problem (1d).  






E. SOLUTIONS TO PRACTICE PROBLEMS 

Additional information about these solutions can be found in the associated Excel file.

1. 
a. The maximum per capita growth rate is 0.20/year. That growth rate occurs when N is very small, near zero.
b. The population’s carrying capacity is 250 individuals. The expected value of rt when N=K is zero.

c. 
[image: ]

d, e and f.
[image: ]


2.
 [image: ]
Time series of density (a) and relationship between density and per capita growth rate (b) for a population of black-throated blue warblers. The solid line in (b) is a linear trend line whose equation is y = –0.08x + 0.89. The R2 for the trend line is 0.47. The dashed line in (b) is a reference line highlighting r = 0.

The value of rmax is equal to the y-intercept of the equation, which is 0.89/year.

In Chapter 3 we learned that the slope of the trend line is equal to – rmax /K.
slope = – rmax /K
We can solve that equation for K and replace the variables on the right side of the equation with values we know to be true:
	K = – rmax /slope = – 0.89/ – 0.08 = 11.125 adult warblers per 10 ha.


3.
[image: ]
Time series of abundance (a) and relationship between density and per capita growth rate (b) for a population of deer. The solid line in (b) is a linear trend line whose equation is y = –0.005x + 0.811. The R2 for the trend line is 0.58. The dashed line in (b) is a reference line highlighting r = 0.

The value of rmax is equal to the y-intercept of the equation, which is 0.811/year.

In Chapter 3 we learned that the slope of the trend line is equal to – rmax /K.
slope = – rmax /K
We can solve that equation for K and replace the variables on the right side of the equation with values we know to be true:
	K = – rmax /slope = – 0.811/ – 0.005 = 162 deer.
5. 
[image: ]
Relationship between abundance and per capita growth rate for two populations with different values of , the parameter that influences the kind of non-linearity that might be observed in density-dependent relationships. Both populations have the same carrying capacity (K=200). Notice how, for the kader population, that values of r are more extreme for a small deviation from K.



[image: ]

Predicted abundances for two populations with different values of . Panel (a) shows growth toward K. Panel (b) shows population decline toward K. 

The kader population (with a large value of ) returns to K more quickly than does the barick population (with a small value of ). Also notice in panel (b) that the kader population overshoots K when it is declining and then increases toward K. These graphs suggest that the kader population is more resilient to, for example, being overharvested.



6. 
[image: ]
Time series of abundance for populations with the same value of K (= 200) and rmax (= 0.3/year), but with different time lags.

With no time lag and a time lag of T = 1, the population asymptotically approaches K. When the time lag is larger, abundance oscillates around K. The oscillations dampen over time and the population eventually settles on K. But the oscillations are more extreme and take longer to dampen as T increases.
	If rmax is reduced to 0.2/year, the oscillations are reduced. If rmax is increased to 0.4/year the oscillations are greater. In fact, oscillations for rmax = 0.4/year and T = 4 seems to result in sustained population cycles that do not dampen over time.
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